亚洲变态另类av首页_亚洲国产综合在线一_正在播放极品白嫩一线天_女生麻豆av在线


首頁
產(chǎn)品系列
行業(yè)應(yīng)用
渠道合作
新聞中心
研究院
投資者關(guān)系
技術(shù)支持
關(guān)于創(chuàng)澤
| En
 
  當(dāng)前位置:首頁 > 新聞資訊 > 機器人開發(fā) > 內(nèi)容流量管理的關(guān)鍵技術(shù):多任務(wù)保量優(yōu)化算法實踐  
 

內(nèi)容流量管理的關(guān)鍵技術(shù):多任務(wù)保量優(yōu)化算法實踐

來源:阿里機器智能      編輯:創(chuàng)澤      時間:2020/6/12      主題:其他   [加盟]
一  業(yè)務(wù)背景

保量策略對于視頻內(nèi)容來說,是一種很重要的投放策略。新熱視頻內(nèi)容都需要增加自身的曝光資源來達(dá)到播放量最大化,而各場景(首頁、頻道頁等)的總體資源有限且每個抽屜坑位的日曝光資源有限,因此各內(nèi)容的曝光資源分配存在競爭問題。另外,不同場景之間相互獨立,每個場景根據(jù)自身的目標(biāo)進行效率和體驗上的優(yōu)化,但是場景與場景之間流量協(xié)同無法通過優(yōu)化單一場景來完成。



圖1 劇集頻道頁和首頁


為內(nèi)容分配曝光量涉及到關(guān)于曝光和點擊建模問題,以及內(nèi)容的未來點擊量預(yù)測問題。內(nèi)容曝光、點擊和播放等構(gòu)成了一個復(fù)雜的非線性混沌系統(tǒng),不僅取決于內(nèi)容質(zhì)量本身,也取決于內(nèi)容更新時間、更新策略和用戶點擊習(xí)慣等。傳統(tǒng)的統(tǒng)計預(yù)測模型無法闡述外部環(huán)境的各種干擾因素以及系統(tǒng)的混沌特性,即無法從機理上描述系統(tǒng)本質(zhì)。針對此問題,我們首先通過分析新熱內(nèi)容的歷史曝光點擊日志,使用常微分方程建立了新熱內(nèi)容曝光敏感模型,即pv-click-ctr模型(簡稱P2C模型)。在P2C模型基礎(chǔ)上,結(jié)合各場景和抽屜的曝光資源約束,給出一種曝光資源約束下的多目標(biāo)優(yōu)化保量框架與算法。

 
圖2 保量策略框架


二  內(nèi)容曝光敏感度模型 

通常情況下,點擊PV(click)隨曝光PV增大而增大,即高曝光帶來高點擊。但是,內(nèi)容消費者數(shù)量有限,給同一個消費者針對單一內(nèi)容重復(fù)曝光并不會帶來更多的點擊量。這種點擊“飽和”現(xiàn)象可從內(nèi)容的歷史曝光點擊日志觀察得到。受此現(xiàn)象啟發(fā),我們根據(jù)內(nèi)容曝光PV和點擊PV歷史數(shù)據(jù)特點,建立一種能夠描述內(nèi)容點擊量隨曝光量變化趨勢的常微分方程(Ordinary Differential Equation, ODE)模型,即 pv-click-ctr (P2C) 模型,整體結(jié)構(gòu)如圖3所示。








CVPOS自助收銀的挑戰(zhàn)以及商品識別算法工程落地方法和經(jīng)驗

針對結(jié)算收銀場景中商品識別的難點,從商品識別落地中的模型選擇、數(shù)據(jù)挑選與標(biāo)注、前端和云端部署、模型改進等方面,進行了深入講解

面向動態(tài)記憶和學(xué)習(xí)功能的神經(jīng)電晶體可塑性研究

神經(jīng)形態(tài)結(jié)構(gòu)融合學(xué)習(xí)和記憶功能領(lǐng)域的研究主要集中在人工突觸的可塑性方面,同時神經(jīng)元膜的固有可塑性在神經(jīng)形態(tài)信息處理的實現(xiàn)中也很重要

人工智能和機器學(xué)習(xí)之間的差異及其重要性

機器學(xué)習(xí)就是通過經(jīng)驗來尋找它學(xué)習(xí)的模式,而人工智能是利用經(jīng)驗來獲取知識和技能,并將這些知識應(yīng)用于新的環(huán)境

滴滴機器學(xué)習(xí)平臺調(diào)度系統(tǒng)的演進與K8s二次開發(fā)

滴滴機器學(xué)習(xí)場景下的 k8s 落地實踐與二次開發(fā)的技術(shù)實踐與經(jīng)驗,包括平臺穩(wěn)定性、易用性、利用率、平臺 k8s 版本升級與二次開發(fā)等內(nèi)容

如何更高效地壓縮時序數(shù)據(jù)?基于深度強化學(xué)習(xí)的探索

大型商用時序數(shù)據(jù)壓縮的特性,提出了一種新的算法,分享用深度強化學(xué)習(xí)進行數(shù)據(jù)壓縮的研究探索

基于深度學(xué)習(xí)目標(biāo)檢測模型優(yōu)缺點對比

深度學(xué)習(xí)模型:OverFeat、R-CNN、SPP-Net、Fast、R-CNN、Faster、R-CNN、R-FCN、Mask、R-CNN、YOLO、SSD、YOLOv2、416、DSOD300、R-SSD

傳統(tǒng)目標(biāo)檢測算法對比

SIFT、PCA-SIFT、SURF 、ORB、 VJ 等目標(biāo)檢測算法優(yōu)缺點對比及使用場合比較

基于深度學(xué)習(xí)和傳統(tǒng)算法的人體姿態(tài)估計,技術(shù)細(xì)節(jié)都講清楚了

人體姿態(tài)估計便是計算機視覺領(lǐng)域現(xiàn)有的熱點問題,其主要任務(wù)是讓機器自動地檢測場景中的人“在哪里”和理解人在“干什么”

讓大規(guī)模深度學(xué)習(xí)訓(xùn)練線性加速、性能無損,基于BMUF的Adam優(yōu)化器并行化實踐

Adam 算法便以其卓越的性能風(fēng)靡深度學(xué)習(xí)領(lǐng)域,該算法通常與同步隨機梯度技術(shù)相結(jié)合,采用數(shù)據(jù)并行的方式在多臺機器上執(zhí)行

音樂人工智能、計算機聽覺及音樂科技

音樂科技、音樂人工智能與計算機聽覺以數(shù)字音樂和聲音為研究對象,是聲學(xué)、心理學(xué)、信號處理、人工智能、多媒體、音樂學(xué)及各行業(yè)領(lǐng)域知識相結(jié)合的重要交叉學(xué)科,具有重要的學(xué)術(shù)研究和產(chǎn)業(yè)開發(fā)價值

【深度】未來5-10年計算機視覺發(fā)展趨勢為何?

專家(查紅彬,陳熙霖,盧湖川,劉燁斌,章國鋒)從計算機視覺發(fā)展歷程、現(xiàn)有研究局限性、未來研究方向以及視覺研究范式等多方面展開了深入的探討

華南理工大學(xué)羅晶博士和楊辰光教授團隊發(fā)文提出遙操作機器人交互感知與學(xué)習(xí)算法

羅晶博士和楊辰光教授團隊提出,遙操作機器人系統(tǒng)可以自然地與外界環(huán)境進行交互、編碼人機協(xié)作任務(wù)和生成任務(wù)模型,從而提升系統(tǒng)的類人化操作行為和智能化程度
 
資料獲取
新聞資訊
== 資訊 ==
» 人形機器人未來3-5年能夠?qū)崿F(xiàn)產(chǎn)業(yè)化的方
» 導(dǎo)診服務(wù)機器人上崗門診大廳 助力醫(yī)院智慧
» 山東省青島市政府辦公廳發(fā)布《數(shù)字青島20
» 關(guān)于印發(fā)《青海省支持大數(shù)據(jù)產(chǎn)業(yè)發(fā)展政策措
» 全屋無主燈智能化規(guī)范
» 微波雷達(dá)傳感技術(shù)室內(nèi)照明應(yīng)用規(guī)范
» 人工智能研發(fā)運營體系(ML0ps)實踐指
» 四驅(qū)四轉(zhuǎn)移動機器人運動模型及應(yīng)用分析
» 國內(nèi)細(xì)分賽道企業(yè)在 AIGC 各應(yīng)用場景
» 國內(nèi)科技大廠布局生成式 AI,未來有望借
» AIGC領(lǐng)域相關(guān)初創(chuàng)公司及業(yè)務(wù)場景梳理
» ChatGPT 以 GPT+RLHF 模
» AIGC提升文字 圖片滲透率,視頻 直播
» AI商業(yè)化空間前景廣闊應(yīng)用場景豐富
» AI 內(nèi)容創(chuàng)作成本大幅降低且耗時更短 優(yōu)
 
== 機器人推薦 ==
 
迎賓講解服務(wù)機器人

服務(wù)機器人(迎賓、講解、導(dǎo)診...)

智能消毒機器人

智能消毒機器人

機器人底盤

機器人底盤

 

商用機器人  Disinfection Robot   展廳機器人  智能垃圾站  輪式機器人底盤  迎賓機器人  移動機器人底盤  講解機器人  紫外線消毒機器人  大屏機器人  霧化消毒機器人  服務(wù)機器人底盤  智能送餐機器人  霧化消毒機  機器人OEM代工廠  消毒機器人排名  智能配送機器人  圖書館機器人  導(dǎo)引機器人  移動消毒機器人  導(dǎo)診機器人  迎賓接待機器人  前臺機器人  導(dǎo)覽機器人  酒店送物機器人  云跡科技潤機器人  云跡酒店機器人  智能導(dǎo)診機器人 
版權(quán)所有 © 創(chuàng)澤智能機器人集團股份有限公司     中國運營中心:北京·清華科技園九號樓5層     中國生產(chǎn)中心:山東日照太原路71號
銷售1:4006-935-088    銷售2:4006-937-088   客服電話: 4008-128-728